ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Elias P. Gyftopoulos
Nuclear Science and Engineering | Volume 10 | Number 3 | July 1961 | Pages 254-268
Technical Paper | doi.org/10.13182/NSE61-A25969
Articles are hosted by Taylor and Francis Online.
Some basic theorems of the geometric theory of differential equations are reviewed, without proofs, in an attempt to clarify: (a) what relationship exists between the general solution of a set of nonlinear differential equations and the solution of its linear approximation and under what conditions this relationship can be used; and (b) how the geometric theory can be used to find properties of boundedness, stability, and periodicity of the solutions of nonlinear differential systems. These theorems are illustrated by means of two-third order examples. The first is the xenon controlled reactor and the second a two-region reactor with two temperature coefficients of reactivity. It is shown without involved computations or any approximations that: (a) Xenon controlled reactor—when the reactivity controlled by xenon is smaller than the prompt xenon yield, the reactor power is always bounded but periodic oscillations may arise. When the reactivity controlled by xenon is greater than the prompt xenon yield the reactor power is unbounded; (b) Two-region reactor—this reactor does not admit periodic solutions. When the temperature coeffi.cients are of opposite sign, conditions are derived for the reactor power to be bounded.