ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Elias P. Gyftopoulos
Nuclear Science and Engineering | Volume 10 | Number 3 | July 1961 | Pages 254-268
Technical Paper | doi.org/10.13182/NSE61-A25969
Articles are hosted by Taylor and Francis Online.
Some basic theorems of the geometric theory of differential equations are reviewed, without proofs, in an attempt to clarify: (a) what relationship exists between the general solution of a set of nonlinear differential equations and the solution of its linear approximation and under what conditions this relationship can be used; and (b) how the geometric theory can be used to find properties of boundedness, stability, and periodicity of the solutions of nonlinear differential systems. These theorems are illustrated by means of two-third order examples. The first is the xenon controlled reactor and the second a two-region reactor with two temperature coefficients of reactivity. It is shown without involved computations or any approximations that: (a) Xenon controlled reactor—when the reactivity controlled by xenon is smaller than the prompt xenon yield, the reactor power is always bounded but periodic oscillations may arise. When the reactivity controlled by xenon is greater than the prompt xenon yield the reactor power is unbounded; (b) Two-region reactor—this reactor does not admit periodic solutions. When the temperature coeffi.cients are of opposite sign, conditions are derived for the reactor power to be bounded.