ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
M. S. Trasi
Nuclear Science and Engineering | Volume 10 | Number 3 | July 1961 | Pages 240-246
Technical Paper | doi.org/10.13182/NSE61-A25967
Articles are hosted by Taylor and Francis Online.
The critical condition is obtained for a system consisting of a ring of N equally spaced identical cylindrical rods in a reflected cylindrical reactor. The fluxes in each region are expressed in terms of a Fourier Series expansion of the angular dependence of the flux about each rod. The imposition of the boundary conditions gives a set of linear homogeneous equations, from which the critical determinant is deduced. Matrix theory is used throughout, which facilitates the treatment of the problem, and which in the case of a bare reactor provides a method of elimination of constants alternative to that given by Avery. The derivation is also valid for a system containing a ring of N multiplying or nonmultiplying zones. A little modification of this theory leads, without difficulty, to the solution of the problem of a ring of N control rods, which are “black” to thermal neutrons.