ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Viktoriya V. Kulik, John C. Lee
Nuclear Science and Engineering | Volume 153 | Number 1 | May 2006 | Pages 69-89
Technical Paper | doi.org/10.13182/NSE06-A2596
Articles are hosted by Taylor and Francis Online.
The presence of a localized spallation source in an accelerator-driven subcritical system leads to significant spatial variations in the power distribution and invalidates the simple point-kinetics approach. To eliminate higher-harmonics contamination in the detector response and to account properly for spatial and spectral effects in reactivity determination, a method directly combining measurements with numerical simulations of the experimental data is developed through a quasi-static formulation. The method provides space-time correction to a variety of traditional point-kinetics techniques and determines the reactivity essentially independent of the detector position, as long as sufficiently accurate information on the reactor configuration is provided. In the current work, the space-time corrections are derived for two well-known point-kinetics methods: area-ratio technique and -method. Numerical simulations performed with the FX2-TH diffusion theory code along with a space-time analysis of MUSE-4 pulsed source experimental data illustrate the applicability of the proposed methods for the determination of significant subcriticality levels in fast and thermal reactor systems.