ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Viktoriya V. Kulik, John C. Lee
Nuclear Science and Engineering | Volume 153 | Number 1 | May 2006 | Pages 69-89
Technical Paper | doi.org/10.13182/NSE06-A2596
Articles are hosted by Taylor and Francis Online.
The presence of a localized spallation source in an accelerator-driven subcritical system leads to significant spatial variations in the power distribution and invalidates the simple point-kinetics approach. To eliminate higher-harmonics contamination in the detector response and to account properly for spatial and spectral effects in reactivity determination, a method directly combining measurements with numerical simulations of the experimental data is developed through a quasi-static formulation. The method provides space-time correction to a variety of traditional point-kinetics techniques and determines the reactivity essentially independent of the detector position, as long as sufficiently accurate information on the reactor configuration is provided. In the current work, the space-time corrections are derived for two well-known point-kinetics methods: area-ratio technique and -method. Numerical simulations performed with the FX2-TH diffusion theory code along with a space-time analysis of MUSE-4 pulsed source experimental data illustrate the applicability of the proposed methods for the determination of significant subcriticality levels in fast and thermal reactor systems.