ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
C. W. Maynard
Nuclear Science and Engineering | Volume 10 | Number 2 | June 1961 | Pages 97-101
Technical Paper | doi.org/10.13182/NSE61-A25945
Articles are hosted by Taylor and Francis Online.
In solving two-dimensional one-energy transport problems, it is often necessary to utilize Monte Carlo calculations in situations where this technique converges very slowly. In problems with regionwise constant sources where the required result is the flux at a point or an integral of the flux over a region or surface, the reciprocity theorem can be used to determine an auxiliary problem which yields the same information while in many cases improving the statistics appreciably. The relations required in choosing the auxiliary problem are derived. The required integrals and statistical errors are stated in terms of the results for the auxiliary problem. Examples are given to illustrate the application of these ideas to a flux peaking situation and to the absorption in a small region. The extension of this procedure to energy-dependent cases is discussed briefly.