ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
C. W. Maynard
Nuclear Science and Engineering | Volume 10 | Number 2 | June 1961 | Pages 97-101
Technical Paper | doi.org/10.13182/NSE61-A25945
Articles are hosted by Taylor and Francis Online.
In solving two-dimensional one-energy transport problems, it is often necessary to utilize Monte Carlo calculations in situations where this technique converges very slowly. In problems with regionwise constant sources where the required result is the flux at a point or an integral of the flux over a region or surface, the reciprocity theorem can be used to determine an auxiliary problem which yields the same information while in many cases improving the statistics appreciably. The relations required in choosing the auxiliary problem are derived. The required integrals and statistical errors are stated in terms of the results for the auxiliary problem. Examples are given to illustrate the application of these ideas to a flux peaking situation and to the absorption in a small region. The extension of this procedure to energy-dependent cases is discussed briefly.