ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
W. Baer
Nuclear Science and Engineering | Volume 10 | Number 1 | May 1961 | Pages 57-60
Technical Paper | doi.org/10.13182/NSE61-A25930
Articles are hosted by Taylor and Francis Online.
A measurement of the epithermal radiative capture in U238 has been carried out in a natural UO2-fueled blanket cluster of the nuclear mock-up of PWR Core 1. Analysis indicates that a substantial increase (∼20%) in epithermal captures in a natural uranium metal plate fuel cluster should occur in the fuel elements adjacent to a wide intercluster water channel. The experiment shows that the captures in a cylindrical UO2 fuel element at the edge of the bundle is only 7% greater than in a neighboring fuel element. However, the radial distribution of captures in the first fuel rod shows that the captures near the wide intercluster water channel are 65% greater than at an equivalent position on the side of the rod away from the water channel. Calculations of the relative epithermal U238 captures in the cluster have shown that diffusion theory predicts the spatial dependence of the captures in the interior of the cluster but fails near the edge of the bundle. Monte Carlo analysis confirms the observed increase in the captures in a fuel rod at the edge of the bundle, although the precision of the analysis does not make a quantitative comparison feasible.