ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
L. A. Fergason, D. E. Seizinger, C. H. McBride
Nuclear Science and Engineering | Volume 10 | Number 1 | May 1961 | Pages 53-56
Technical Paper | doi.org/10.13182/NSE61-A25929
Articles are hosted by Taylor and Francis Online.
A method for the analysis of hydrogen in uranium metal by mass spectrometry is described. The samples are introduced into a tube containing helium at atmospheric pressure. Hydrogen gas evolved from the heated sample is mixed with a helium gas stream flowing through the tube and over the sample at a constant rate. The effluent gas mixture is monitored at M/e 2. The resulting rate-of-evolution curve is integrated with respect to time by an electronic integrator. The empirical number so obtained is directly proportional to the hydrogen content of the metal. The method has been adapted to the Bendix Time-of-Flight and the Consolidated Electrodynamics Model 21-611 Mass Spectrometers. A description of the associated instrumentation is presented. The determination requires from 3 to 10 min. on the mass spectrometer, depending on the size of sample and the hydrogen content of the metal. Precision comparable to that of the classical vacuum technique is obtained. The technique described is also adaptable to the study of hydrogen diffusion through uranium metal.