ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
L. A. Fergason, D. E. Seizinger, C. H. McBride
Nuclear Science and Engineering | Volume 10 | Number 1 | May 1961 | Pages 53-56
Technical Paper | doi.org/10.13182/NSE61-A25929
Articles are hosted by Taylor and Francis Online.
A method for the analysis of hydrogen in uranium metal by mass spectrometry is described. The samples are introduced into a tube containing helium at atmospheric pressure. Hydrogen gas evolved from the heated sample is mixed with a helium gas stream flowing through the tube and over the sample at a constant rate. The effluent gas mixture is monitored at M/e 2. The resulting rate-of-evolution curve is integrated with respect to time by an electronic integrator. The empirical number so obtained is directly proportional to the hydrogen content of the metal. The method has been adapted to the Bendix Time-of-Flight and the Consolidated Electrodynamics Model 21-611 Mass Spectrometers. A description of the associated instrumentation is presented. The determination requires from 3 to 10 min. on the mass spectrometer, depending on the size of sample and the hydrogen content of the metal. Precision comparable to that of the classical vacuum technique is obtained. The technique described is also adaptable to the study of hydrogen diffusion through uranium metal.