ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Albert L. Hanson, Hans Ludewig, David J. Diamond
Nuclear Science and Engineering | Volume 153 | Number 1 | May 2006 | Pages 26-32
Technical Paper | doi.org/10.13182/NSE06-4
Articles are hosted by Taylor and Francis Online.
The prompt neutron lifetime was calculated for the NBSR, a heavy water-cooled and -moderated research reactor at the National Institute of Standards and Technology. The method is based on the fact that the decay of a pulse of fast neutrons is related to the prompt neutron lifetime (and the multiplication constant for the reactor and the delayed neutron fraction). A Monte Carlo simulation of the decay is then used to calculate the prompt neutron lifetime at two points in the fuel cycle. At the start-up of a new cycle, the prompt neutron lifetime was calculated to be 774 ± 35 s, and at the end of a cycle, it was calculated to be 819 ± 48 s.