ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Donald E. Parks
Nuclear Science and Engineering | Volume 9 | Number 4 | April 1961 | Pages 430-441
Technical Paper | doi.org/10.13182/NSE61-A25907
Articles are hosted by Taylor and Francis Online.
The principal result of the work reported in this paper is a first-order differential equation for the neutron spectrum in an energy region where the effects of chemical binding are significant but not dominant. Solutions of the differential equation provide accurate results for the spectrum in the cases of moderation by hydrogen, as well as by the heavier moderators, such as beryllium and graphite. In the derivation of the results, no restrictions are made concerning the nature of the motions of the moderator atoms. Interference effects in the neutron scattering are, however, neglected. The integral properties of the scattering kernel, which are found to influence the spectrum significantly, are calculated by means of the short-collision-time approximation, first introduced by Wick to compute the effects of chemical binding on slow neutron-scattering cross sections. Finally, for heavy moderators the representation of the energy-transfer properties of the moderator in terms of a first-order differential operator are combined with the P1 approximation to give a useful description of the spatially dependent spectrum.