The relative U238 resonance capture integrals of 0.387-in. diameter UO2 and uranium metal fuel rods have been measured as well as the spatial distributions of the captures in each type of rod. The effective resonance integral of the UO2 rod was found to be 1.30 ± 0.02 times that of the . uranium metal rod. This difference is due to the lower density of uranium atoms and the presence of oxygen moderation in the UO2 fuel rod. The relative importance of each of these two effects was determined by means of U-Zr and U-Al alloy fuel rods. Of the 0.30 excess of the UO2 resonance capture integral over that of the uranium metal, 0.15 ± 0.02 was contributed by the lower U238 atom density of the UO2 rod, and the remaining 0.15 was attributed to oxygen moderation. Work done by Hellstrand (5) gives a value of 1.41 ± 0.03 for the U238 resonance capture integral for the UO2 rod relative to that of the uranium metal rod. Furthermore, by evaluating his expression for the resonance integral of a metal rod at a value of S/M corresponding to a “low-density” uranium metal rod (U238 atom density equal to that of the UO2 rod) of 0.387-in. diameter, one obtains a density effect of 1.32. These discrepancies can be attributed, at least partially, to a differing flux spectrum at energies above 30 kev in the present experiment as compared with Hellstrand's experiment. Whereas the high-energy flux is depleted in his experiment, there was an appreciable flux peak present in the TRX measurements.