ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. G. Smith, J. Hardy, D. Klein, J. A. Mitchell
Nuclear Science and Engineering | Volume 9 | Number 4 | April 1961 | Pages 421-429
Technical Paper | doi.org/10.13182/NSE61-A25906
Articles are hosted by Taylor and Francis Online.
The relative U238 resonance capture integrals of 0.387-in. diameter UO2 and uranium metal fuel rods have been measured as well as the spatial distributions of the captures in each type of rod. The effective resonance integral of the UO2 rod was found to be 1.30 ± 0.02 times that of the . uranium metal rod. This difference is due to the lower density of uranium atoms and the presence of oxygen moderation in the UO2 fuel rod. The relative importance of each of these two effects was determined by means of U-Zr and U-Al alloy fuel rods. Of the 0.30 excess of the UO2 resonance capture integral over that of the uranium metal, 0.15 ± 0.02 was contributed by the lower U238 atom density of the UO2 rod, and the remaining 0.15 was attributed to oxygen moderation. Work done by Hellstrand (5) gives a value of 1.41 ± 0.03 for the U238 resonance capture integral for the UO2 rod relative to that of the uranium metal rod. Furthermore, by evaluating his expression for the resonance integral of a metal rod at a value of S/M corresponding to a “low-density” uranium metal rod (U238 atom density equal to that of the UO2 rod) of 0.387-in. diameter, one obtains a density effect of 1.32. These discrepancies can be attributed, at least partially, to a differing flux spectrum at energies above 30 kev in the present experiment as compared with Hellstrand's experiment. Whereas the high-energy flux is depleted in his experiment, there was an appreciable flux peak present in the TRX measurements.