The time-dependent energy spectra, for times greater than the slowing-down time, were generated in a monatomic heavy gas with the help of a multigroup formalism. These spectra were obtained for the infinite as well as finite media of beryllium and graphite. The behavior of asymptotic energy spectra during the last stage of neutron thermalization and diffusion periods was studied. The thermalization time constant for the establishment of the final Maxwellian velocity distribution of neutrons, in a monatomic heavy gas, was estimated to be equal to (1.176ξΣs0υ0)−1. Total thermalization times for neutrons in beryllium and graphite were found to be equal to 114 and 238 µsec, respectively. Using the energy-dependent transport mean free path, the diffusion cooling coefficient for beryllium was calculated to be equal to 0.890 cm2 For graphite, under the constant diffusion coefficient assumption, the diffusion cooling coefficient was determined to be equal to 1.922 cm2.