ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
M. Azam, R. S. Gowda, S. Ganesan
Nuclear Science and Engineering | Volume 152 | Number 3 | March 2006 | Pages 320-324
Technical Paper | doi.org/10.13182/NSE06-A2586
Articles are hosted by Taylor and Francis Online.
The relative differential cross section for testing the validity of the Ramsauer model was previously introduced by Azam and Gowda. This quantity for intermediate energy neutron scattering processes is independent of the details of nuclear interaction and depends only on nuclear radius as a parameter. In this paper we use this quantity to predict the neutron total and differential shape-elastic cross sections. We show that, given the radius parameter, by making a measurement of the differential cross section at one angle, the total shape-elastic cross section (and hence the reaction cross section if the total cross section is known) can be determined to a good degree of accuracy. The forward-angle differential shape-elastic cross section is also well predicted. The method is of very general applicability and will be most useful in those situations where model-based fits to these quantities either do not exist or are unreliable for extrapolation/interpolation.