ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
W. K. Anderson C. J. Beck, J. S. Theilacker
Nuclear Science and Engineering | Volume 9 | Number 1 | January 1961 | Pages 1-15
Technical Paper | doi.org/10.13182/NSE61-A25858
Articles are hosted by Taylor and Francis Online.
The cost of control rods which contributes a significant fraction to the total cost of a power reactor core is discussed as a function of metallurgical composition and reactor endurance. Materials considered include hafnium, Cd5-In15-Ag80 alloy, several boron carrying systems, and dispersions of such rare earth oxides as Eu2O3, Gd2O3, and Dy2O3. Costs based on a thorough analysis of processing variables and raw material prices are presented for a variety of rods for a specific reactor design considered typical of enriched power plants of the present generation. Concentrations were established by an approximate method described by Stevens. Although this method is relatively crude, results are considered adequate for purposes of this paper. For long-lived cores the lowest cost rods of proven composition were a composite rod with hafnium tip and boron dispersion upper blade or hafnium rods if the hafnium can be bought at presently quoted zirconium co-product prices. Rare earth cermets of properly adjusted composition also fell into an interesting price range. Boron dispersions though lower in cost cannot be considered among the proven materials for long-lived high burn-up cores. For shut down rods or cores of shorter endurance boron steels offer a low cost solution to the problem. For cores of intermediate endurance or shut down rods for longer endurance cores, Cd-In-Ag alloy rods may be of use and are certainly economically attractive.