ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
T. F. Wimett, R. H. White, W. R. Stratton, D. P. Wood
Nuclear Science and Engineering | Volume 8 | Number 6 | December 1960 | Pages 691-708
Technical Paper | doi.org/10.13182/NSE60-2
Articles are hosted by Taylor and Francis Online.
Design features of Godiva II, the improved pulsed-reactor successor to Lady Godiva, are discussed together with characteristics of power excursions, and performance is compared with that of the original Godiva. Measurements of the wait time between stepwise reactivity insertion and the occurrence of a burst are presented and compared with theory based on a statistical model of fission chains. Analytical and numerical solutions of the reactor equations are developed to reproduce experimental data and extrapolate to higher energy release. Consideration is also given to perturbations arising from room-returned neutrons. Two different modes of operation are discussed and some design problems of Godiva-type pulsed reactors are briefly mentioned. Typical bursts are illustrated with peak powers up to 13,000 Mw and widths at half-maximum down to 35 µsec.