ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
T. F. Wimett, R. H. White, W. R. Stratton, D. P. Wood
Nuclear Science and Engineering | Volume 8 | Number 6 | December 1960 | Pages 691-708
Technical Paper | doi.org/10.13182/NSE60-2
Articles are hosted by Taylor and Francis Online.
Design features of Godiva II, the improved pulsed-reactor successor to Lady Godiva, are discussed together with characteristics of power excursions, and performance is compared with that of the original Godiva. Measurements of the wait time between stepwise reactivity insertion and the occurrence of a burst are presented and compared with theory based on a statistical model of fission chains. Analytical and numerical solutions of the reactor equations are developed to reproduce experimental data and extrapolate to higher energy release. Consideration is also given to perturbations arising from room-returned neutrons. Two different modes of operation are discussed and some design problems of Godiva-type pulsed reactors are briefly mentioned. Typical bursts are illustrated with peak powers up to 13,000 Mw and widths at half-maximum down to 35 µsec.