ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
G. R. Keepin, C. W. Cox
Nuclear Science and Engineering | Volume 8 | Number 6 | December 1960 | Pages 670-690
Technical Paper | doi.org/10.13182/NSE60-A25852
Articles are hosted by Taylor and Francis Online.
The reactor kinetic equations are reduced to an integral form convenient for explicit numerical solution, involving no approximations beyond the usual space-independent assumption. Numerical evaluation is performed by the RTS (Reactor Transient Solution) code, written in FORTRAN II for the IBM-704 computer. The characteristic roots and residues which arise in this method of solution have been computed and are tabulated in detail for each of the main fissile species. Analytic or point-function reactivity variation may be introduced, together with constant or time-varying reactivity compensation, and the resulting power response, total energy release, and compensated reactivity computed precisely as functions of time. The code solves the general non-equilibrium kinetics problem with extraneous sources, the customary equilibrium solution being a special case of the general solution. Practical use of the method is demonstrated through computed response curves for representative reactivity-addition functions in various types of chain-reacting systems.