ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
R. T. Jacobs, J. A. Merrill
Nuclear Science and Engineering | Volume 8 | Number 6 | December 1960 | Pages 480-496
Technical Paper | doi.org/10.13182/NSE60-A25834
Articles are hosted by Taylor and Francis Online.
The comparative correlations of this report thoroughly demonstrate that significantly more precise equations for calculating burnout heat flux can be obtained by following the proposed “system-describing” concept, that if the independent, system-describing variables of a system are known, the burnout heat flux can be predicted. With this concept, the independent variable of inlet temperature has been used rather than the dependent variable of outlet subcooling or enthalpy. The same statistical (regression analysis) method of correlation was used for burnout data from several sources with both inlet temperature and outlet enthalpy so that the consistently better predictions using inlet temperature would not be attributed to using a different method of correlation. Due to the fact that Reactor technology and design no longer allow the engineer safety factor added upon safety factor, a decided advantage of the regression analysis correlation is that it is possible to calculate the statistical uncertainty of the predicted burnout heat flux.