ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. D. Hickman, J. A. Bistline, L. A. MacNaughton
Nuclear Science and Engineering | Volume 8 | Number 5 | November 1960 | Pages 381-392
Technical Paper | doi.org/10.13182/NSE60-A25818
Articles are hosted by Taylor and Francis Online.
A series of fifteen experiments were carried out on an 8 × 30 × 32 in. core in the Pressurized Critical Assembly at KAPL. In twelve of these experiments, 0.030-in. boron stainless steel septa bisected the 8-in. dimension. These septa contained various weight per cent B10. In the remaining three experiments, there were no boron-stainless steel septa in the core. The eigenvalues and neutron density distributions were compared with values which were calculated using Deutsch cross sections and “Thin Region Theory.” The eigenvalues which were calculated were within one per cent of the experimental values, with a spread of approximately one per cent. For all the cores, the calculated eigenvalues were lower than the experimental values. Analyses of the neutron density distributions showed the calculated results in fairly good agreement with the experimental results. In all cases, this agreement was as good for the cores which contained the boron septa as for the ones which did not. It therefore appears that the boron has been well represented by “Thin Region Theory,” and that the main discrepancies between calculated and experimental values are due to the inadequacies of adapting the Deutsch scheme to these cores.