ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Jan Dufek, Waclaw Gudowski
Nuclear Science and Engineering | Volume 152 | Number 3 | March 2006 | Pages 274-283
Technical Paper | doi.org/10.13182/NSE06-2
Articles are hosted by Taylor and Francis Online.
A new adaptive stochastic approximation method for an efficient Monte Carlo calculation of steady-state conditions in thermal reactor cores is described. The core conditions that we consider are spatial distributions of power, neutron flux, coolant density, and strongly absorbing fission products like 135Xe. These distributions relate to each other; thus, the steady-state conditions are described by a system of nonlinear equations. When a Monte Carlo method is used to evaluate the power or neutron flux, then the task turns to a nonlinear stochastic root-finding problem that is usually solved in the iterative manner by stochastic optimization methods. One of those methods is stochastic approximation where efficiency depends on a sequence of stepsize and sample size parameters. The stepsize generation is often based on the well-known Robbins-Monro algorithm; however, the efficient generation of the sample size (number of neutrons simulated at each iteration step) was not published yet. The proposed method controls both the stepsize and the sample size in an efficient way; according to the results, the method reaches the highest possible convergence rate.