ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
John F. Carew, Kai Hu
Nuclear Science and Engineering | Volume 152 | Number 3 | March 2006 | Pages 256-273
Technical Paper | doi.org/10.13182/NSE06-A2580
Articles are hosted by Taylor and Francis Online.
The changes in the energy dependence of the neutron removal cross section at the vessel inner wall water/steel interface produce a substantial shift in the neutron spectrum as the fluence propagates into the pressure vessel. To account for this spectral shift, Regulatory Guide 1.99, Revision 2 requires that the fluence used in determining the reference temperature for nil-ductility transition RTNDT be extrapolated from the pressure vessel inner surface using the displacements per atom (dpa).The strong azimuthal and axial variation of the fluence at the vessel inner wall results in a substantial redistribution of the fluence as it propagates through the vessel due to transverse neutron leakage (i.e., perpendicular to the radial direction through the vessel). This transverse leakage tends to increase the dpa radial attenuation in regions of high fluence and reduce the attenuation in regions of low fluence.A series of pressure vessel fluence calculations has been carried out to determine the effect of (a) the transverse neutron leakage and (b) the plant-specific reactor design configuration on the radial attenuation of the dpa through the vessel. The calculations were performed for four operating pressurized water reactors and were carried out using the methods described in U.S. Nuclear Regulatory Commission Regulatory Guide 1.190. The calculations were performed with the DORT discrete ordinates transport code using ENDF/B-VI neutron transport and dpa cross sections.The transverse leakage is found to introduce a substantial variation of the dpa attenuation rate over the inner surface of the vessel. In the belt-line region opposite the core, the transverse leakage results in an ~6 to 14% azimuthal variation and an ~3 to 11% axial variation in the dpa at a 15-cm depth into the vessel, depending on the plant configuration.In order to simplify the determination of RTNDT in probabilistic fracture mechanics analyses, conservative belt-line and reflector region dpa attenuation rates have been determined. Plant-specific analytic expressions for the radial dependence of the dpa through the vessel have also been determined.