ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
D. Graham Foster, Jr.
Nuclear Science and Engineering | Volume 8 | Number 2 | August 1960 | Pages 148-156
Technical Paper | doi.org/10.13182/NSE60-A25790
Articles are hosted by Taylor and Francis Online.
The age to indium resonance of nearly monoenergetic 0.97-Mev neutrons from spherical Na-γ-Be sources has been measured in water and kerosene. The age from a point source is inferred by extrapolation from measurements made with sources ¾ and ⅜ in. in diameter. The flux age is 13.9 ± 0.2 cm2 in water and 13.8 ± 0.2 cm2 in kerosene. Calculations by the moments method give 13.9 ± 0.1 cm2 in each medium, in excellent agreement with the measurements. The thermal migration area measured concurrently is 21.5 ± 0.4 cm2 in water and 20.6 ± 0.4 cm2 in kerosene. The migration area calculated from the resonance age is 22.2 ± 0.5 cm2 in water and 21.8 ± 0.5 cm2 in kerosene. Both of these are substantially larger than the measured values.