ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
My story: Stanley Levinson—ANS member since 1983
Levinson early in his career and today.
As a member of the American Nuclear Society, I have been to many conferences. The International Conference on Probabilistic Safety Assessment and Analysis (PSA ’25), embedded in ANS Annual Meeting in Chicago in June, held special significance for me with the PSA ’25 opening plenary session recognizing the 50th anniversary of the publication of WASH-1400, which helped define my career. Reflecting on that milestone sent me back to 1975, when I was just an undergraduate student studying nuclear engineering at Rensselaer Polytechnic Institute (RPI) in Troy, N.Y., focusing on my mechanics, fluids, and thermodynamic classes as well as my first set of nuclear engineering classes. At that time—and many times since—the question “Why nuclear engineering?” was raised.
John R. Weeks, Carl J. Klamut
Nuclear Science and Engineering | Volume 8 | Number 2 | August 1960 | Pages 133-147
Technical Paper | doi.org/10.13182/NSE60-A25789
Articles are hosted by Taylor and Francis Online.
The variables affecting corrosion and mass transfer of steels by inhibited liquid Bi are discussed and explained in terms of the variables affecting formation of the ZrN or ZrC inhibiting films. Corrosion is acclerated by increasing the maximum temperature of operation, the temperature differential, and the Cr content of the steel. Low carbon areas also are more sensitive to attack, as are rough surfaces. Segregation in weld areas and their normally low C content may be responsible for preferential weld attack. Formation of the inhibiting nitride and/or carbide films is controlled by the activity and distritribution of N and C in the steel. Minor constituents that influence their activity and distribution may also therefore affect the corrosion resistance. Localized attack is accompanied by Zr deposition, possibly resulting from interaction between the dissolved Zr and carbide particles in the steel. ZrN films may spall, and can reform in the spalled and corroded areas.