ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
John R. Weeks, Carl J. Klamut
Nuclear Science and Engineering | Volume 8 | Number 2 | August 1960 | Pages 133-147
Technical Paper | doi.org/10.13182/NSE60-A25789
Articles are hosted by Taylor and Francis Online.
The variables affecting corrosion and mass transfer of steels by inhibited liquid Bi are discussed and explained in terms of the variables affecting formation of the ZrN or ZrC inhibiting films. Corrosion is acclerated by increasing the maximum temperature of operation, the temperature differential, and the Cr content of the steel. Low carbon areas also are more sensitive to attack, as are rough surfaces. Segregation in weld areas and their normally low C content may be responsible for preferential weld attack. Formation of the inhibiting nitride and/or carbide films is controlled by the activity and distritribution of N and C in the steel. Minor constituents that influence their activity and distribution may also therefore affect the corrosion resistance. Localized attack is accompanied by Zr deposition, possibly resulting from interaction between the dissolved Zr and carbide particles in the steel. ZrN films may spall, and can reform in the spalled and corroded areas.