ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
John R. Weeks, Carl J. Klamut
Nuclear Science and Engineering | Volume 8 | Number 2 | August 1960 | Pages 133-147
Technical Paper | doi.org/10.13182/NSE60-A25789
Articles are hosted by Taylor and Francis Online.
The variables affecting corrosion and mass transfer of steels by inhibited liquid Bi are discussed and explained in terms of the variables affecting formation of the ZrN or ZrC inhibiting films. Corrosion is acclerated by increasing the maximum temperature of operation, the temperature differential, and the Cr content of the steel. Low carbon areas also are more sensitive to attack, as are rough surfaces. Segregation in weld areas and their normally low C content may be responsible for preferential weld attack. Formation of the inhibiting nitride and/or carbide films is controlled by the activity and distritribution of N and C in the steel. Minor constituents that influence their activity and distribution may also therefore affect the corrosion resistance. Localized attack is accompanied by Zr deposition, possibly resulting from interaction between the dissolved Zr and carbide particles in the steel. ZrN films may spall, and can reform in the spalled and corroded areas.