ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jeffery Lewins
Nuclear Science and Engineering | Volume 8 | Number 2 | August 1960 | Pages 95-104
Technical Paper | doi.org/10.13182/NSE60-A25784
Articles are hosted by Taylor and Francis Online.
A physical axiom is advanced that relates to the density of neutrons and their individual contribution to the operationally determinable behavior of a reactor. The variational principle derived from this axiom is of a general form applicable to systems in which the time dependency of the coefficients of the equations prevents a separation into conventional eigenfunctions and eigenvalues. The physical significance of the independent variation of two field functions is investigated. The treatment of the nonseparable systems and the variational principle to which we are led are both independent of any particular physical model employed to represent the system and appear to be applicable to a variety of nonconservative, continuous, and time-dependent systems in mathematical physics. The more well-known properties of the separable problem are derived from the principle as “the exception proving the rule” in an attempt to associate physical meaning with the commonly employed forms. Thus a discussion is given of the relation of the Green's function to both fields and the Joint Error is introduced as a criterion for the completeness of biorthogonal sets. Although the variational principle derived is not applicable to variation of the coefficients of the equations through nonlinearities, it is indicated how the present approach may be extended to account for nonlinearities.