ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Jeffery Lewins
Nuclear Science and Engineering | Volume 8 | Number 2 | August 1960 | Pages 95-104
Technical Paper | doi.org/10.13182/NSE60-A25784
Articles are hosted by Taylor and Francis Online.
A physical axiom is advanced that relates to the density of neutrons and their individual contribution to the operationally determinable behavior of a reactor. The variational principle derived from this axiom is of a general form applicable to systems in which the time dependency of the coefficients of the equations prevents a separation into conventional eigenfunctions and eigenvalues. The physical significance of the independent variation of two field functions is investigated. The treatment of the nonseparable systems and the variational principle to which we are led are both independent of any particular physical model employed to represent the system and appear to be applicable to a variety of nonconservative, continuous, and time-dependent systems in mathematical physics. The more well-known properties of the separable problem are derived from the principle as “the exception proving the rule” in an attempt to associate physical meaning with the commonly employed forms. Thus a discussion is given of the relation of the Green's function to both fields and the Joint Error is introduced as a criterion for the completeness of biorthogonal sets. Although the variational principle derived is not applicable to variation of the coefficients of the equations through nonlinearities, it is indicated how the present approach may be extended to account for nonlinearities.