ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Yoshiro Asahi, Tomoaki Suzudo, Nobuyuki Ishikawa, Toru Nakatsuka
Nuclear Science and Engineering | Volume 152 | Number 2 | February 2006 | Pages 219-235
Technical Paper | doi.org/10.13182/NSE06-A2577
Articles are hosted by Taylor and Francis Online.
An analysis of a boiling water reactor turbine trip was performed with the THYDE-NEU code. In spatial kinetics, reactivity was not used since the three-dimensional transient diffusion equation was solved with the implicit direct integration method. The plant was treated as a closed coolant system, and hence, it was necessary to cope with thermal-hydraulic behaviors at pressures as low as the atmospheric pressure. At low pressures, nonlinearity of the thermal-hydraulic equation is enhanced, and hence, a thermal nonequilibrium model is required. To satisfy the measured initial pressure distribution within the reactor, it was necessary to have the moisture separator model and to account for a reversible pressure drop at a junction with a flow area change. Among the parameters in THYDE-NEU is in the thermal nonequilibrium model in addition to C1 and C2 regarding the manner in which to express the coolant density used in the table look-up of cross sections. For a pair of C1 and C2, it is possible to find parametrically a value of , namely, C, so that THYDE-NEU can reproduce the experimental fact that the core-averaged local power range monitor output RAPRM reached 0.95 at 0.63 s to generate a scram signal. One of the calculations with C was compared with the experiment. It was shown that the spatial kinetics results are sensitive to the temporal behavior of the bypass valve opening. Among the assumptions in use, those to be scrutinized before further performing sensitivity calculations were indicated.