ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Hangbok Choi, Gérald Rimpault, Jean C. Bosq
Nuclear Science and Engineering | Volume 152 | Number 2 | February 2006 | Pages 204-218
Technical Paper | doi.org/10.13182/NSE06-A2576
Articles are hosted by Taylor and Francis Online.
A neutronic feasibility study was performed for a 600-MW(thermal) gas-cooled fast reactor fuel cycle through recycling simulations. Sensitivity calculations were also performed for various physics design parameters such as the plutonium volume fraction of the fuel, fuel burnup, core material volume fraction, and the power density. The results showed that the initial breeding gain of -0.04755 is sufficient to sustain the recycling of the actinides with a reasonable amount of natural uranium and plutonium feed material. The comparative calculation on the core power density has shown that it is feasible to reduce the amount of minor actinides and spent fuel in the high power density core (98.4 MW/m3) compared to the reference core (58.2 MW/m3). It was also found that the fuel cycle cost is saved by 0.4 mills/kWh for the high power density core compared to the reference core.