ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
D. C. Anderson
Nuclear Science and Engineering | Volume 7 | Number 5 | May 1960 | Pages 468-471
Technical Paper | doi.org/10.13182/NSE60-A25746
Articles are hosted by Taylor and Francis Online.
The thermal neutron flux kernel for a point fission source in a hydrogenous medium is obtained analytically by representing the epithermal slowing down source in a convenient functional form. Normalization is achieved by invoking an appropriate conservation condition. The temperature dependence is then assessed from experimentally determined variation in the diffusion length and appropriate variation in the fitting parameters for the slowing down source. It is concluded that the kernel for water is rather insensitive to change in the diffusion length, and in fact, the r2-flux varies to a good approximation as f(ρr), ρ being the temperature-dependent specific gravity.