ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
T. Kammash
Nuclear Science and Engineering | Volume 7 | Number 5 | May 1960 | Pages 425-434
Technical Paper | doi.org/10.13182/NSE60-A25740
Articles are hosted by Taylor and Francis Online.
The elastic-plastic deformation of a tube subjected to radially uniform heat generation is considered using Tresca's yield function, its associated flow rule, and a linear work-hardening law. The tube is assumed to be in the state of plane strain and all the elastic and thermal parameters are taken to be temperature independent. For a uniform heat source Q, which increases monotonically with time and which has an insulated inner surface, yielding commences at the inner boundary and propagates outward upon further thermal loading. Immediately after initiation of yield, a plastic region (inner) and an elastic region (outer) are formed with the tangential stress as the intermediate principal stress in both regions. The maximum strength of a heat source, QM, to which a tube may be subjected is taken to correspond to that value of Q which makes the tube almost entirely plastic. This value of Q is computed for several graphite tubes of different thicknesses and then compared with an experimentally obtained QF which corresponds to total failure (fracture) of these tubes. A value of approximately 2.5 is obtained for QF/QM for tubes of moderate thicknesses. Furthermore, the ratio QF/QM remains practically constant as tube thickness increases. Agreement between theory and experiment especially in depicting the dependence of failure load on tube thickness and temperature gradient is considered excellent in light of the many assumptions made. The application of this theory to the design of nuclear reactor fuel elements is also pointed out.