ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
S. B. Gunst, E. D. McGarry, J. J. Scoville
Nuclear Science and Engineering | Volume 7 | Number 5 | May 1960 | Pages 407-418
Technical Paper | doi.org/10.13182/NSE60-A25738
Articles are hosted by Taylor and Francis Online.
Natural uranium dioxide specimens of Shippingport PWR-l blanket-rod geometry are exposed in the Materials Testing Reactor (flux 2 × 1014 n/cm2−sec) and discharged periodically (every three weeks) for measurements in the Reactivity Measurement Facility (RMF). The time-integrated thermal and epithermal fluxes are measured during each exposure cycle, and together with the MTR Daily Power Logs, give the complete exposure history. Measurements in the RMF are used to determine an experimental value for η/η0 (η0 is the preirradiation value) which may be compared with the theoretical η/η0 calculated for the measured exposure history using appropriate neutron-interaction parameters. In the theoretical calculations, the thermal absorption cross section of stable fission products is taken to be 50 barns per fission. Although the experimental and theoretical results are derived completely independently, agreement within 1 % in η/η0 is found for the behavior following all cycles of irradiation comprising exposures from zero to 15,600 Mwd/ton.