ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Farno L. Green, John A. Martin
Nuclear Science and Engineering | Volume 7 | Number 4 | April 1960 | Pages 387-391
Technical Paper | doi.org/10.13182/NSE60-A25733
Articles are hosted by Taylor and Francis Online.
The radioisotopes Mn54, I125, and I130 were produced at higher rates and at lower cost when targets of isotopically enriched Cr54, Te125, and Te130 were bombarded with protons in the ORNL 86-Inch Cyclotron. The product isotopes were carrier-free and also relatively free of undesired radioisotopes. The use of enriched isotopes as cyclotron targets is economically attractive when the target material can be recovered and reused. To obtain the maximum production rate for radioisotopes in a cyclotron, both the usable beam power and the excitation function of the nuclear reaction must be considered; in some cases the maximum rate is achieved at a reduced energy. With the ORNL 86-Inch Cyclotron, (p, n) reaction production rates were increased by a factor of 1.7 by decreasing the proton energy from 22 to 18 Mev and doubling the output current. Methods of reducing the energy below the maximum design value are discussed.