ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
Frederick G. Hammitt, Evan C. Kovacic, Frederick J. Leitz
Nuclear Science and Engineering | Volume 7 | Number 4 | April 1960 | Pages 327-335
Technical Paper | doi.org/10.13182/NSE60-A25726
Articles are hosted by Taylor and Francis Online.
The problems that might result from the release of fission gases in mobile fuel fast reactors are considered for two types of mobile fuel systems; namely, a molten alloy fuel system of the type to be used in the Los Alamos Molten Plutonium Reactor Experiment and a paste fuel system of the type being developed by the Atomic Power Development Associates, Inc. It is shown that the volume of fission gases generated in fast reactors operating at high-power density would supersaturate such fuel systems in minutes or less. An examination of the physical conditions in the reactor core and an evaluation of the phenomena responsible for bubble formation result in the conclusions that neither fuel system will sustain a significant degree of supersaturation and that bubble formation will most likely occur at a solid-liquid interface rather than in the bulk of the liquid. The effects of bubble formation in each system are considered, and these are seen to involve partial blanketing of the heat transfer surfaces, overheating of the fuel—particularly of the paste fuel, equilibrium dilution of the fuel with significant loss in reactivity, sudden displacement of the fuel with subsequent rapid changes in reactivity, and blocking of narrow fuel ligaments and orifices. Preliminary experiments, using supersaturated solutions of carbon dioxide in water and in water-glass bead beds are reported, which verify some of the analyses which are made regarding the location of bubble formation and the growth of bubbles. The flow characteristics of pastes in tubes and the behavior of gas bubbles in such flow systems are discussed in the light of experiments which were conducted using a simulant system of air/glass beads/water.