ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Donald W. Bell
Nuclear Science and Engineering | Volume 7 | Number 3 | March 1960 | Pages 245-251
Technical Paper | doi.org/10.13182/NSE60-A25709
Articles are hosted by Taylor and Francis Online.
A study and statistical analysis has been performed on available burnout heat-flux data for vertical upflow of water in uniformly heated rectangular channels at 2000 psia. Two correlating equations were developed with the fluid mass velocity and enthalpy at the burnout location as the two independent variables. It was not found necessary to include the channel length-to-thickness ratio as a third independent variable. The range of variables studied are: 540 to 1000 Btu/lb burnout enthalpy and 0.2 × 106 to 5 × 106 lb/hr-ft2 mass velocity. It is shown that the burnout heat-flux decreases as mass velocity increases for a constant burnout enthalpy in the quality range. Also, a comparison of the developed correlations based upon data for uniformly-heated channels was made with 25 burnout data points for channels having a cosine-shaped axial heat-flux distribution. The cosine data fall on the average of about thirty percent below the burnout heat-flux values for uniformly heated channels under the same coolant conditions at the burnout location.