ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
H. E. Hungerford, R. F. Mantey, L. P. Van Maele
Nuclear Science and Engineering | Volume 6 | Number 5 | November 1959 | Pages 396-408
Technical Paper | doi.org/10.13182/NSE59-A25678
Articles are hosted by Taylor and Francis Online.
Investigation and development of several new materials for high-temperature shields have yielded three reasonably cheap materials which are structurally stable and able to withstand high temperatures and high radiation fields. Calculations indicate good neutron attenuation properties. These materials have undergone extensive development and testing for both physical and radiation effect data. They are (1) serpentine rock, (2) calcium borate, and (3) borated diatomaceous earth. Serpentine rock (3 MgO·SiO2·2H2O), as asbestos mineral, retains its water of hydration to temperatures as high as 950°F. It can be used either dry-packed, or as the aggregate in concrete, with densities attainable of about 130 lb/cu ft. Structurally, the aggregate is not quite as good as concrete. Calcium borate is the commercial name applied to a number of borated calcium minerals pressed into an asbestos matrix to give a boron content of about 12 w/o, with a density of over 70 lb/cu ft. Although the composite is brittle, it can be fabricated into shapes rather easily. Tests indicate it will withstand temperatures up to 1800°F with less than 3% shrinkage, and can be exposed to a neutron irradiation of 2.4 × 1020 nvt without damage. Diatomaceous earth, a porous commercial refractory material, has been successfully borated to the extent of about 2 w/o boron. It can be used as an aggregate in portland or lumnite concrete to give good strength properties and densities of 78–82 lb/cu ft.