ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
Milton Ash, Richard Bellman, Robert Kalaba
Nuclear Science and Engineering | Volume 6 | Number 2 | August 1959 | Pages 152-156
Technical Paper | doi.org/10.13182/NSE59-A25646
Articles are hosted by Taylor and Francis Online.
After a high-flux thermal nuclear reactor is shut down, the concentration of fission product xenon may rise for many hours as a result of the decay of fission product iodine into Xe135. This results in reactor poisoning and may, with consequent loss of efficiency, postpone the time at which the reactor may be restarted. This poisoning may be minimized by carefully controlling the rate at which the neutron flux is decreased during the shut-down operation. The determination of optimal control in this situation leads to some nonclassical problems in the calculus of variations. The aim of this paper is to show how they can be treated by the functional equation technique of dynamic programming. The methods we present rely upon the use of high-speed digital computers with large memories. The method automatically produces a valuable parameter study and results in stable designs.