ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
P. Greebler, W. Harker, J. Harriman
Nuclear Science and Engineering | Volume 6 | Number 2 | August 1959 | Pages 128-134
Technical Paper | doi.org/10.13182/NSE59-A25642
Articles are hosted by Taylor and Francis Online.
In a low-enrichment reactor at sufficiently high temperature that the Pu239 absorption cross section departs appreciably from 1/υ, plutonium build-up increases the sensitivity of the calculated thermal cross sections to the thermalization techniques used. Thermal neutron spectra are compared for two thermalization models in a heterogeneous lattice of a low-enrichment water-moderated reactor. Using blackness theory, equivalent homogeneous, monoenergetic cross sections for the lattice are computed at closely spaced energy intervals over the thermal energy range. The energy distribution of the thermal neutron flux is then obtained using both the Wigner-Wilkins and the Wilkins thermalization equations. Calculations are made with the fuel elements assumed to contain only U235 and U238 yielding almost pure 1/υ absorption, and also for the case of appreciable Pu239 present in addition to the uranium resulting in a significant departure from 1/υ absorption. Sensitivity of the calculated spectrum to the effective mass of the hydrogen is tested by allowing wide variations of the ξσs values for water at low energies in several applications of the Wilkins equation. Variations in the thermal neutron spectra, resulting from the choice of the thermalization equation (Wigner-Wilkins or Wilkins), from changing ξσs, or as a result of plutonium build-up, are evaluated in terms of isotopic cross sections averaged over the spectrum in each case.