ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jean-Marc Depinay, Michel Caillaud, Remi Sentis
Nuclear Science and Engineering | Volume 152 | Number 1 | January 2006 | Pages 48-55
Technical Paper | doi.org/10.13182/NSE06-A2562
Articles are hosted by Taylor and Francis Online.
Application of the Monte Carlo method to deep-penetration transport problems often requires a biasing technique based on the use of an importance function. Here, in the framework of a multigroup model, we use an importance function in the form Ig([arrow over]x, [arrow over]) = eKg[arrow over].[arrow over]x[varphi]g([arrow over]), where g is the energy group index that ranges from 1 to G and [arrow over] is a vector usually fixed empirically. We describe an algorithm to find a good set of coefficients Kg and a good set of functions [varphi]g. To do this, we solve a system derived from the homogenous adjoint equations. We give two numerical examples where we show how these importance functions can enhance the accuracy of the computation.