ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
John J. Volpe, George G. Smith, Daniel Klein, F. S. Frantz, Jocelyn C. Andrews
Nuclear Science and Engineering | Volume 5 | Number 6 | June 1959 | Pages 360-370
Technical Paper | doi.org/10.13182/NSE59-A25611
Articles are hosted by Taylor and Francis Online.
An experimental and analytical study of the flux distribution of two-region core configurations has been made for the TRX facility. The purpose of this study was to obtain an estimate of the sizes of critical configurations that would yield the same values of the basic reactor parameters in the inner region as a critical core consisting entirely of the inner region material and geometry. Several two-region cores have been constructed and experimental measurements of thermal utilization, resonance escape probability, and fast fission effects have been performed. Slow and fast neutron activation distributions have also been obtained. Two inner regions were constructed utilizing 1.3 w/o enriched UO2 fuel 0.384 in. in diameter and with a density of 10.53 gm/cm3. A third inner region utilized 1.3 w/o enriched uranium metal fuel with a diameter of 0.387 in. Light water served as the moderator and reflector in all cases. The experimental and theoretical results indicate that by utilizing two-region cores, measurements of microscopic parameters can be made for a wide variety of fuel sizes, fuel enrichments, and water-to-uranium volume ratios without the construction of full critical cores for each combination.