ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
John J. Volpe, George G. Smith, Daniel Klein, F. S. Frantz, Jocelyn C. Andrews
Nuclear Science and Engineering | Volume 5 | Number 6 | June 1959 | Pages 360-370
Technical Paper | doi.org/10.13182/NSE59-A25611
Articles are hosted by Taylor and Francis Online.
An experimental and analytical study of the flux distribution of two-region core configurations has been made for the TRX facility. The purpose of this study was to obtain an estimate of the sizes of critical configurations that would yield the same values of the basic reactor parameters in the inner region as a critical core consisting entirely of the inner region material and geometry. Several two-region cores have been constructed and experimental measurements of thermal utilization, resonance escape probability, and fast fission effects have been performed. Slow and fast neutron activation distributions have also been obtained. Two inner regions were constructed utilizing 1.3 w/o enriched UO2 fuel 0.384 in. in diameter and with a density of 10.53 gm/cm3. A third inner region utilized 1.3 w/o enriched uranium metal fuel with a diameter of 0.387 in. Light water served as the moderator and reflector in all cases. The experimental and theoretical results indicate that by utilizing two-region cores, measurements of microscopic parameters can be made for a wide variety of fuel sizes, fuel enrichments, and water-to-uranium volume ratios without the construction of full critical cores for each combination.