ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
A. Borella, K. Volev, A. Brusegan, P. Schillebeeckx, F. Corvi, N. Koyumdjieva, N. Janeva, A. A. Lukyanov
Nuclear Science and Engineering | Volume 152 | Number 1 | January 2006 | Pages 1-14
Technical Paper | doi.org/10.13182/NSE06-A2557
Articles are hosted by Taylor and Francis Online.
The neutron capture cross section of thorium has been measured in the energy region between 4 and 140 keV at the GELINA time-of-flight facility of the Institute for Reference Materials and Measurements in Geel, Belgium. The gamma rays from capture events were detected by two C6D6 liquid scintillators, placed 14.37 m from the neutron source. The shape of the neutron flux was measured with a 10B-loaded ionization chamber. To obtain a detection efficiency independent of the gamma cascade and proportional to the total excitation energy, the pulse-height weighting technique was applied. The data have been normalized to the well-isolated and almost saturated 232Th resonance at 23.5 eV. The systematic uncertainties related to the normalization and weighting function, using an internal saturated resonance, are ~1.5%. An additional systematic uncertainty of 0.5% results from the self-shielding and multiple scattering corrections.Between 4 and 140 keV, our data are ~9 and 6.5% higher than the data of Kobayashi et al. and Macklin et al., respectively, and in good agreement with the data of Poenitz and Smith. Below 15 keV our data deviate by up to 30% from the data reported by Wisshak et al. Our data have been analyzed in terms of average level parameters. The resulting parameters are consistent with the resolved resonance parameters deduced from the transmission measurements of Olsen et al.