ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. Borella, K. Volev, A. Brusegan, P. Schillebeeckx, F. Corvi, N. Koyumdjieva, N. Janeva, A. A. Lukyanov
Nuclear Science and Engineering | Volume 152 | Number 1 | January 2006 | Pages 1-14
Technical Paper | doi.org/10.13182/NSE06-A2557
Articles are hosted by Taylor and Francis Online.
The neutron capture cross section of thorium has been measured in the energy region between 4 and 140 keV at the GELINA time-of-flight facility of the Institute for Reference Materials and Measurements in Geel, Belgium. The gamma rays from capture events were detected by two C6D6 liquid scintillators, placed 14.37 m from the neutron source. The shape of the neutron flux was measured with a 10B-loaded ionization chamber. To obtain a detection efficiency independent of the gamma cascade and proportional to the total excitation energy, the pulse-height weighting technique was applied. The data have been normalized to the well-isolated and almost saturated 232Th resonance at 23.5 eV. The systematic uncertainties related to the normalization and weighting function, using an internal saturated resonance, are ~1.5%. An additional systematic uncertainty of 0.5% results from the self-shielding and multiple scattering corrections.Between 4 and 140 keV, our data are ~9 and 6.5% higher than the data of Kobayashi et al. and Macklin et al., respectively, and in good agreement with the data of Poenitz and Smith. Below 15 keV our data deviate by up to 30% from the data reported by Wisshak et al. Our data have been analyzed in terms of average level parameters. The resulting parameters are consistent with the resolved resonance parameters deduced from the transmission measurements of Olsen et al.