ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
Louis J. Barbieri, J. Wallace Webster, Ken Tang Chow
Nuclear Science and Engineering | Volume 5 | Number 2 | February 1959 | Pages 105-119
Technical Paper | doi.org/10.13182/NSE59-A25563
Articles are hosted by Taylor and Francis Online.
The economics and physics of plutonium recycle in the Calder Hall type reactor are considered. Three possible schemes of recycle are studied. In scheme A the plutonium produced in a run is blended with fresh natural uranium for a subsequent run; in scheme B the plutonium is alloyed with some diluent metal and fabricated into high heat-transfer elements more like MTR- or PWR-seed type elements and a subsequent load of fresh natural uranium elements is “spiked” with these plutonium elements; and in scheme C half the spent uranium is recycled as well as the plutonium. The conclusions are that scheme A will be the most economic means of recycle and will compete very favorably with the mode of operation where the plutonium is sold at the end of each run for $12 per gm. Viewed in another way, with natural uranium having its current value and lease charge, the fuel value of plutonium for recycling, with all costs considered, will be greater than $12 per gm. Schemes B and C do not look as attractive as A for the Calder Hall type reactor. The results are predicated on the assumption that the fuel elements will withstand exposure levels as high as 8800 Mwd/ton. This is beyond present experience, but it is believed that it is not unrealistic to assume that such exposures will be achieved in the future with improved fuel elements. A matrix-analytic solution to the differential equations governing isotopic concentrations as functions of flux-time is also developed.