ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jack Chernick, Russel Vernon
Nuclear Science and Engineering | Volume 4 | Number 5 | November 1958 | Pages 649-672
Technical Paper | doi.org/10.13182/NSE58-A25554
Articles are hosted by Taylor and Francis Online.
Two basic formulas for resonance absorption applicable both to mixtures and to lumps are considered, the narrow resonance (NR) approximation and the infinite mass (NRIA) approximation. The formulas are shown to be complementary, yielding accurate results when the choice between them is based on the practical width of the resonance line as originally suggested by Wigner. The formulas are used to calculate resonance integrals for U238 and Th232. The results yield a low mass absorption term and a surface absorption term proportional to the square root of the surface-to-mass ratio for lumps of practical size in qualitative agreement with the experimental work of Egiazarov and Hellstrand for U238 and with Dayton and Pettus for thorium. Dresner’s suggestion that the ratio of the resonance integral to the mass absorption term is independent of the resonance structure is not borne out. Refinement of the basic formulas is discussed. The correction of the NRIA formula for energy degradation is in agreement with Spinney’s calculations for U-H mixtures and with Monte Carlo results obtained by Auerbach for uranium-water lattices. Consideration of lumping effects indicates that the basic formulas generally underestimate the resonance absorption. It is therefore recommended that the common use of ill-defined flux disadvantage factors be dropped.