ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
W. E. Ray, C. J. Beck
Nuclear Science and Engineering | Volume 4 | Number 3 | September 1958 | Pages 481-494
Symposium on Reactor Control Materials | doi.org/10.13182/NSE58-A25544
Articles are hosted by Taylor and Francis Online.
A round die hot coextrusion technique used to prepare rods having complex cross sections has been developed and successfully applied to the fabrication of powder metallurgy parts with and without external cladding. The procedure involves assembling and extruding steel billets of round cross section which contain an axially located assembly of powder metallurgy and sheet metal parts which is an enlarged and shortened mockup of the desired part. After extrusion, the steel parts are removed and a fully dense rod having the desired shape and composition remains. Rods having several compositions in metal lurgically joined zones along their lengths can be produced by this method. For example, a Y-shaped rod with a Ti-25 volume per cent Eu2O3 dispersion at one end, a Ti-10.7 volume per cent B10 dispersion midsection, and a pure Ti length at the other end was successfully produced. It showed dimensional uniformity in keeping with usual tolerances for reactor control components and was clad with a fully bonded, 0.005-inch thick layer of titanium. Data on the physical properties, corrosion performance, thermal cycling resistance, and irradiation damage resistance of parts produced by this technique are presented. These data indicate that the method can be successfully used to produce reactor components which are very difficult to manufacture by other techniques.