ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
W. E. Ray, C. J. Beck
Nuclear Science and Engineering | Volume 4 | Number 3 | September 1958 | Pages 481-494
Symposium on Reactor Control Materials | doi.org/10.13182/NSE58-A25544
Articles are hosted by Taylor and Francis Online.
A round die hot coextrusion technique used to prepare rods having complex cross sections has been developed and successfully applied to the fabrication of powder metallurgy parts with and without external cladding. The procedure involves assembling and extruding steel billets of round cross section which contain an axially located assembly of powder metallurgy and sheet metal parts which is an enlarged and shortened mockup of the desired part. After extrusion, the steel parts are removed and a fully dense rod having the desired shape and composition remains. Rods having several compositions in metal lurgically joined zones along their lengths can be produced by this method. For example, a Y-shaped rod with a Ti-25 volume per cent Eu2O3 dispersion at one end, a Ti-10.7 volume per cent B10 dispersion midsection, and a pure Ti length at the other end was successfully produced. It showed dimensional uniformity in keeping with usual tolerances for reactor control components and was clad with a fully bonded, 0.005-inch thick layer of titanium. Data on the physical properties, corrosion performance, thermal cycling resistance, and irradiation damage resistance of parts produced by this technique are presented. These data indicate that the method can be successfully used to produce reactor components which are very difficult to manufacture by other techniques.