ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
D. J. Donahue, D. D. Lanning, R. A. Bennett, R. E. Heineman
Nuclear Science and Engineering | Volume 4 | Number 3 | September 1958 | Pages 297-321
Technical Paper | doi.org/10.13182/NSE58-A25530
Articles are hosted by Taylor and Francis Online.
The PCTR is a seven-foot cube of graphite with a large cavity, 2 x 2 x 3 ft, located at its center. It is made critical by enriched uranium which is distributed on the boundary of the central cavity. One end of the assembly, 2 x 7 x 7 ft, is mounted on a movable cart, and can be moved away from the reactor proper allowing access to the central test region. The infinite medium, thermal neutron multiplication factor, k∞, of a multiplying material is obtained by determining the amount of thermal absorber, which, when inserted with the multiplying material into the central region of the PCTR, will change neither the reactivity of the assembly nor the energy distribution of neutrons in it. The design of the reactor and the method used for determining this absorber mass are discussed and results for two graphite-natural uranium lattices are presented.