ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Mark T. Robinson
Nuclear Science and Engineering | Volume 4 | Number 3 | September 1958 | Pages 270-287
Technical Paper | doi.org/10.13182/NSE58-A25528
Articles are hosted by Taylor and Francis Online.
A simple phenomenological theory is presented to describe the xenon poisoning of a molten fluoride fueled nuclear reactor which is sparged with a suitable inert gas. The extension of the theory to removal of other fission product species is indicated. The theory is illustrated by a parametric study. It is found that arbitrarily low levels of Xe135 can be achieved by adequate sparging of the fuel. Such sparging also frees these reactors from the trouble-some rise of the xenon poisoning during shutdowns. No reactivity transients of a serious nature are likely to result from changes in the rates of the xenon removal processes.