ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
H. A. Morewitz, R. F. Valentine
Nuclear Science and Engineering | Volume 4 | Number 1 | July 1958 | Pages 73-81
Technical Paper | doi.org/10.13182/NSE58-A25520
Articles are hosted by Taylor and Francis Online.
Some new techniques have been applied in the determination of relative neutron fluxes in water moderated critical assemblies. Alloy wires of Mn-Fe, In-Al, Au-Al, and U-Zr have been prepared with a high degree of uniformity between individual samples of a given material. Beta activation of these wires is measured by thin scintillation crystals in conjunction with specially stabilized electronics. This procedure results in good “plateaus” of counting rate vs photomultiplier voltage, discriminator setting, and amplifier gain. The counting time of a wire is controlled by a decaying sample of the activated material. Thus, as the counting continues, the counting interval becomes progressively longer, providing automatic decay correction of the data. Several benefits obtain from this method. The statistics of counting for a wire of a given activation level are independent of the time of counting; nonuniform decay (e.g., mixed fission product decay) is handled with the same facility as simple exponential decay. Automatic sample changers are used which make possible the counting of larger numbers of samples (approximately 1500 per day) with a minimum of personnel. These changers have been so adjusted that good precision in positioning is maintained. The automatic features of the counting system permit a rapid qualitative evaluation of the data. An error analysis has been made which indicates an experimental counting error (exclusive of statistical error due to decay) of approximately 0.8%. This error, when combined with the appropriate statistical error, has been applied to improve the use of computer codes in obtaining accurate least square fits of theoretical curves to the experimental data.