ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Industry Update—October 2025
Here is a recap of recent industry happenings:
New international partnership to speed Xe-100 SMR deployment
X-energy, Amazon, Korea Hydro & Nuclear Power, and Doosan Enerbility have formed a strategic partnership to accelerate the deployment of X-energy’s Xe-100 small modular reactors and TRISO fuel in the United States to meet the power demands from data centers and AI. The partners will collaborate in reactor engineering design, supply-chain development, construction planning, investment strategies, long-term operations, and global opportunities for joint AI-nuclear deployment. The companies also plan to jointly mobilize as much as $50 billion in public and private investment to support advanced nuclear energy in the U.S.
H. A. Morewitz, R. F. Valentine
Nuclear Science and Engineering | Volume 4 | Number 1 | July 1958 | Pages 73-81
Technical Paper | doi.org/10.13182/NSE58-A25520
Articles are hosted by Taylor and Francis Online.
Some new techniques have been applied in the determination of relative neutron fluxes in water moderated critical assemblies. Alloy wires of Mn-Fe, In-Al, Au-Al, and U-Zr have been prepared with a high degree of uniformity between individual samples of a given material. Beta activation of these wires is measured by thin scintillation crystals in conjunction with specially stabilized electronics. This procedure results in good “plateaus” of counting rate vs photomultiplier voltage, discriminator setting, and amplifier gain. The counting time of a wire is controlled by a decaying sample of the activated material. Thus, as the counting continues, the counting interval becomes progressively longer, providing automatic decay correction of the data. Several benefits obtain from this method. The statistics of counting for a wire of a given activation level are independent of the time of counting; nonuniform decay (e.g., mixed fission product decay) is handled with the same facility as simple exponential decay. Automatic sample changers are used which make possible the counting of larger numbers of samples (approximately 1500 per day) with a minimum of personnel. These changers have been so adjusted that good precision in positioning is maintained. The automatic features of the counting system permit a rapid qualitative evaluation of the data. An error analysis has been made which indicates an experimental counting error (exclusive of statistical error due to decay) of approximately 0.8%. This error, when combined with the appropriate statistical error, has been applied to improve the use of computer codes in obtaining accurate least square fits of theoretical curves to the experimental data.