ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
E. D. Arnold
Nuclear Science and Engineering | Volume 3 | Number 6 | June 1958 | Pages 707-725
Technical Paper | doi.org/10.13182/NSE58-A25506
Articles are hosted by Taylor and Francis Online.
The buildup of the important transmutation products in irradiated uranium was calculated. Significant quantities of such products are produced upon irradiation with pile neutrons, using an MTR geometrical configuration as reference. These quantities are further increased with subsequent recycle through power reactors. The nuclides are U236, U237, Np237, and Pu238. Variables included in this study were: irradiation levels of 6 × 1019 to 3 × 1021 n/cm2; effect of recycle in the range 1 to 400 cycles and infinite recycle (or steady state); initial fuel enrichment (where applicable) in the range of 0.5–3.0% U235; and the effect of fraction of U236 removed by a gaseous diffusion plant reconcentration of U235 in the range 0–100% removal. This last variable depends on the operational characteristics of the diffusion plant. The buildup of transmutation products may have many appreciable effects on the design and operation of fuel recycle. The decay time required will increase as a result of higher concentrations of U237; chemical separation plants may be required to separate Np237 as well as uranium, plutonium, and fission products; and the buildup of Pu238 in the plutonium product may create additional biological or handling problems. An important conclusion of this work is that all problems resulting from isotope buildup in the U235 buildup chain may be decreased in seriousness by approximately an order of magnitude with removal of about 25% of the U236 by re-enrichment in a gaseous diffusion plant.