ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
G. L. Morgan, K. R. Alrick, D. W. Bowman, F. C. Cverna, N. S. P. King, P. E. Littleton, G. A. Greene, A. L. Hanson, C. L. Snead, Jr., J. M. Hall, J. Frehaut, X. Ledoux, S. Leray, E. Petibon, R. T. Thompson, P. D. Ferguson, E. A. Henry, T. E. Ward
Nuclear Science and Engineering | Volume 151 | Number 3 | November 2005 | Pages 293-304
Technical Paper | doi.org/10.13182/NSE05-A2548
Articles are hosted by Taylor and Francis Online.
Integral neutron production was measured by the manganese-activation technique, on targets semiprototypic of spallation-neutron-driven transmutation systems, after irradiation by 400-MeV to 2.0-GeV protons. The purpose of these experiments was to provide data to benchmark nuclear transport codes for targets irradiated by protons in this energy range, as well as to evaluate design options to maximize the production of spallation neutrons in various targets under consideration. These computer codes are used to design accelerator systems that will utilize spallation neutrons for the generation of tritium, transmutation of nuclear waste, production of radioisotopes, and other scientific investigations. Some of the targets used in this investigation were semiprototypic of the proposed Accelerator Production of Tritium target. Other targets were included to provide data to test the computational models in the codes. Total neutron production is the main factor that determines the economics of transmutation for a particular accelerator design. Comparisons of the data reported here with calculations from computer simulations show agreement to within 15% over the entire energy region for most of the targets.