ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
Myron B. Reynolds
Nuclear Science and Engineering | Volume 3 | Number 4 | April 1958 | Pages 428-434
Technical Paper | doi.org/10.13182/NSE58-A25479
Articles are hosted by Taylor and Francis Online.
Data on the diffusion of fission krypton from irradiated 20 weight per cent uranium-aluminum alloy are presented. At temperatures below 640°C (the eutectic) there was no measurable loss of radiokrypton from this alloy during annealing periods of up to three weeks. At temperatures above the eutectic gas evolution occurred with a time dependence in rough agreement with the theoretical prediction for diffusion from spherical particles. The nature of the diffusion process for rare gases in metallic systems is discussed with particular reference to the limitations imposed on diffusion rate by solubility and available concentration gradient. The basic difference between the behavior of fission gases in dispersion-type nuclear fuels and in homogeneous solid-type fuels is outlined. The data on the uranium-aluminum alloy system are interpreted in light of this discussion.