ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
J. H. Kittel, S. H. Paine
Nuclear Science and Engineering | Volume 3 | Number 3 | March 1958 | Pages 250-268
Technical Paper | doi.org/10.13182/NSE58-A25465
Articles are hosted by Taylor and Francis Online.
Results are given from experiments in which unrestrained specimens of unalloyed natural uranium were irradiated to total atom burnups ranging up to 1.82% (15,500 Mwd/T) at temperatures from 50° to 220°C. A few specimens were also thermally cycled. The specimens represented material with four different fabrication histories: (1) rolled at 300°C, (2) rolled at 300°C and quenched from the beta phase, (3) rolled at 300°C, quenched from the beta phase, and recrystallized in the alpha phase, and (4) rolled at 600°C. It was found that the 300°C rolled specimens in the as-rolled condition grew in length at a rapid rate when subjected to irradiation, although they maintained relatively smooth surfaces. The growth rate of this material appeared to decrease with increasing irradiation temperature. The beta-quenched specimens were much more stable dimensionally but developed roughened surfaces. The 600°C rolled material showed intermediate behavior. It was concluded that 300°C rolled and beta-quenched uranium can withstand at least 2 atomic per cent burnup without disintegration due to irradiation damage. A qualitative similarity was found between the irradiation growth rates of the four materials and their growth rates under thermal cycling.