ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Akio Yamamoto
Nuclear Science and Engineering | Volume 151 | Number 3 | November 2005 | Pages 274-282
Technical Paper | doi.org/10.13182/NSE151-274
Articles are hosted by Taylor and Francis Online.
This paper proposes a new acceleration method for neutron transport calculations: the generalized coarse-mesh rebalance (GCMR) method. The GCMR method is a unified scheme of the traditional coarse-mesh rebalance (CMR) and the coarse-mesh finite difference (CMFD) acceleration methods. Namely, by using an appropriate acceleration factor, formulation of the GCMR method becomes identical to that of the CMR or CMFD method. This also indicates that the convergence property of the GCMR method can be controlled by the acceleration factor since the convergence properties of the CMR and CMFD methods are generally different. In order to evaluate the convergence property of the GCMR method, a linearized Fourier analysis was carried out for a one-group homogeneous medium, and the results clarified the relationship between the acceleration factor and the spectral radius. It was also shown that the spectral radius of the GCMR method is smaller than those of the CMR and CMFD methods. Furthermore, the Fourier analysis showed that when an appropriate acceleration factor was used, the spectral radius of the GCMR method did not exceed unity in this study, which was in contrast to the results of the CMR or the CMFD method. Application of the GCMR method to practical calculations will be easy when the CMFD acceleration is already adopted in a transport code. By multiplying a suitable acceleration factor to a coefficient (DFD) of a finite difference formulation, one can improve the numerical instability of the CMFD acceleration method.