ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
Robert Avery
Nuclear Science and Engineering | Volume 3 | Number 2 | February 1958 | Pages 129-144
Technical Paper | doi.org/10.13182/NSE58-A25455
Articles are hosted by Taylor and Francis Online.
Coupling a fast and thermal assembly in a power breeder reactor affords the possibility of obtaining the relatively long neutron lifetime characteristic of a thermal assembly and the high breeding ratio characteristic of a fast assembly. General properties of such mixed systems are discussed. A suggested design is discussed and compared with a prototype all-fast system. The coupled system considered consists of a 400-liter Pu239 fueled, Na-cooled, fast core surrounded by a 10-cm inner blanket annulus containing natural U, Na coolant, and structural material, but no moderator. Outside the inner blanket is a 30-cm annulus of Be surrounded by an outer blanket consisting primarily of depleted U. The inner blanket serves as core for the thermal system, as barrier for low-energy neutrons between moderator and fast core, and as reflector for the fast core. Its construction is essentially the same as the first part of the blanket in a fast power breeder, so that the transition from an allfast system to the coupled system involves only the replacement of blanket material by moderator and the use of natural rather than depleted uranium in the inner blanket. The properties of the system described are thereby changed: neutron lifetime increases from ∼1.5 × 10-7 sec. to ∼2×10-5 sec; breeding ratio reduced ∼10%; fast core critical mass decreased ∼10%; multiplication constant of the system without the contribution of thermal fissions ∼0.95; thermal fissions generate ∼13% of total power; and the radial power distribution in fast core flattened, maximum to average ratio reduced from ∼1.5 to ∼1.3.