ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Zhiwen Xu, Mujid S. Kazimi, Michael J. Driscoll
Nuclear Science and Engineering | Volume 151 | Number 3 | November 2005 | Pages 261-273
Technical Paper | doi.org/10.13182/NSE05-A2545
Articles are hosted by Taylor and Francis Online.
Reducing the burden of management of spent nuclear fuel is important to the future of nuclear energy. The impact of higher pressurized water reactor (PWR) fuel burnup is examined in this paper from the perspective of its impact on spent-fuel radioactivity, decay heat, and plutonium content. The necessary fresh fuel enrichments to achieve high burnup in PWRs with the same three-batch operation scheme are first computed; then, characteristics of the spent fuel are determined. The increase in decay heat with burnup is found to be generally less than linear. Although each high-burnup fuel assembly would be hotter and more radioactive, the total decay heat to be removed or accommodated in storage is less for the same electricity production. If the time window before 150 yr after discharge can be excluded from impacting a repository, significant savings in its capacity can be realized with high-burnup fuel. The high-burnup fuel is more proliferation resistant because of reduced total plutonium production per kilowatt hour and because of higher content of less desirable plutonium isotopes, such as 238Pu. The fuel cycle cost can be slightly reduced by increasing burnup until it reaches a shallow minimum near 70 MWd/kg. Higher burnups would require one-time changes to the limits on enrichments that can be handled in most commercial fuel fabrication facilities. Changing the waste fee to base it on the amount of radioactivity in the spent fuel would enhance the economic benefit of high burnup.