ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
D. E. Ferguson
Nuclear Science and Engineering | Volume 2 | Number 5 | September 1957 | Pages 664-675
Technical Paper | doi.org/10.13182/NSE57-A25433
Articles are hosted by Taylor and Francis Online.
A promising scheme for the chemical processing of a thorium breeder reactor of the two-region aqueous homogeneous type consists of the following operations: concentration of insoluble fission and corrosion products from the core system into a small volume of fuel solution, combining this slurry with irradiated thorium oxide slurry taken from the blanket, recovery of D2O by evaporation, dissolution of the thorium and uranium in HNO3, and, after a suitable cooling period, recovery of the uranium and thorium by solvent extraction for return to the reactor. The use of a hydroclone and underflow container arrangement for concentrating insoluble fission and corrosion products under simulated reactor conditions has been successfully demonstrated on dynamic loops. Solids concentration factors greater than 103 were demonstrated, and equilibrium solids concentration in the circulating solution less than 1 ppm was attained in these tests. Present data indicate that proper design and operation will minimize solids deposition in the reactor system and that the insoluble impurities can be effectively removed by the hydroclone. An alternate method of processing the slurry removed from the core system by the hydroclone consists of removing the room temperature insolubles by centrifugation, recovering the uranium from the supernatant by peroxide precipitation, thermal decomposition of the uranyl peroxide in dilute deuterated sulfuric acid to produce reactor fuel. This method has been successfully tested on a laboratory scale using a simulated hydroclone underflow slurry. Laboratory and loop studies of iodine chemistry indicate that iodine is sufficiently volatile under reactor conditions to be removed by gas stripping. The effect of radiation, temperature, and other fission products on iodine valence have been studied.