ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
A. dos Santos, G. S. de Andrade e Silva, A. G. Mendonça, R. Fuga, A. Y. Abe
Nuclear Science and Engineering | Volume 151 | Number 2 | October 2005 | Pages 237-250
Technical Paper | doi.org/10.13182/NSE05-A2543
Articles are hosted by Taylor and Francis Online.
TORT, an SN three-dimensional transport code, is employed for the analysis of the inversion point of the isothermal reactivity coefficient of the IPEN/MB-01 reactor. The analyses are performed in companion NJOY, AMPX-II, and TORT systems considering the data libraries ENDF/B-VI.8, JENDL3.3, and JEF3.0. The analyses reveal that for this peculiar problem, there is a need to convert all the computer codes to DOUBLE-PRECISION as well as to increase to seven the number of digits of the ANISN library generated by XSDRNPM. Contrary to the traditional diffusion theory codes, TORT keff results are very sensitive to the number of both fine and broad groups. For instance, the traditional and very well known two- and four-group structure, largely utilized in several diffusion codes, produced simply unacceptable keff results. The highest deviation between calculated and experimental values found for the inversion point was -4.48°C. At first glance, there appears to be a significant discrepancy. However, in terms of reactivity coefficient, this discrepancy means a deviation of -0.90 ± 0.05 pcm/°C, which indicates that the calculational methodology and related nuclear data libraries meet the desired accuracy (-1.0 pcm/°C) for the determination of this parameter for thermal reactors.